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Abstract: Ever since its emergence the Internet has 
revolutionized the way people interact and share information 
with each other. However certain limitations in the capabilities 
of current protocols hinder the development of more immersive 
and private experiences. The Internet in its current form is 
lacking mainly in two respects: immersion and privacy. By lack 
of immersion I mean the continuing use of 2D interfaces in 
place of 3D virtual environments that offer more detail and 
better user experience. By lack of privacy I refer to the at best 
incomplete and at worst nonexistent safeguards to protect user 
privacy. In order to solve these problems I propose Hades1 - a 
Metaverse protocol designed to enable richer experiences and 
better privacy for its users. Hades employs a modified version 
of the glTF standard for efficient 3D file exchange and strong 
cryptography as a means to better privacy. I call the virtual 
worlds that make use of the Hades protocol Hadean Worlds, 

which together form the Hadean Metaverse. 
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Introduction 
 

Although the term Metaverse originates from the science fiction novel “Snow Crash” (Stephenson, 1992), the 
core idea that it represents – transcendental worlds inhabited by agentic beings – is much more ancient. Sundry items 
found in burials in the Upper Paleolithic indicate belief in the afterlife (Petru, 2019: 6-13) – an ancestral precursor to 
the modern notion of Metaverse. Pantheons and spirit worlds in ancient mythologies are also early examples (Black et 
al., 1992; Fry, 2017). Modern religious belief in the existence of supernatural worlds has persisted in part due to the 
continuing influence of the Abrahamic doctrines (Somov, 2017; Davidson, 1973: 33). Altered states of consciousness 
induced by psychoactive substances are additional means of interacting with hallucinated beings in otherworldly 
environments (Clottes et al., 1998)2. We are interested in artificially reproducing these experiences with the aid of 
computers3. 
 

Dreams are naturally occurring states of consciousness in which the user is usually unaware that they are 
dreaming (Lévy-Bruhl, 2020). Such unawareness can be undesirable within the Metaverse. Henceforth I define 
Redfield’s first problem4 to describe a case in which the user is unable to distinguish between the Metaverse and the real 
world5. I define Zhuangzi’s first problem6 to describe a case in which the user is unable to distinguish between the 
different identities they own or represent themselves as in the Metaverse and the real world. Furthermore I define a 
stronger variant of Redfield’s first problem to refer to a case where the user is unable to distinguish between the 
different virtual worlds within the Metaverse. Note that the user may be unable to distinguish between the real world 
and the Metaverse, or between different virtual worlds within the Metaverse due to psychosis (Arciniegas, 2015) or 
other naturally-occurring mental disturbances, but in this paper I assume that the user is lucid. A stronger variant of 

6 Zhuangzi’s first problem is named after the author of “The Butterfly Dream” (庄子, 476–221 BC). 

5 The reality may be a simulation (Bostrom, 2003), but this ambiguity has no effect on the protocol. See Appendix B for a 
discussion on the consequences of the Hades protocol for the simulation hypothesis. 

4 Redfield’s first problem is named after Cooper Redfield (played by Wyatt Russell) from Black Mirror episode “Playtest” 
(Netflix, 2016). 

3 Modern Metaverse is a form of computational shamanism – a retrogression toward an ancestral environment where 
agentic “spirits” embodied by avatars inhabit transcendental worlds. 

2 c.f. Shamanism (Diószegi et al., 2024) and animism (Park, 2023). 

1 Hades protocol is named after the ancient Greek God of the Underworld, see Mythos (Fry, 2017). 
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Zhuangzi’s first problem is a case where the user is unable to distinguish between the different identities they own or 
represent themselves as within the Metaverse. Note that the user may not be able to distinguish between the different 
identities they own or represent themselves as in the Metaverse and the real world, or within different virtual worlds 
in the Metaverse due to dissociative identity disorder (Peters et al., 2017) or other naturally-occurring mental 
disturbances. But in this paper I assume that the user is undisturbed. I define third-person variants of these two 
problems as secondary problems. Thus Redfield’s secondary problem describes a case in which a third-party is able to 
find out whether the user is in the real world or the Metaverse. A stronger variant of Redfield’s secondary problem 
refers to a case when a third-party is able to find out which virtual world the user currently resides in within the 
Metaverse. Zhuangzi’s secondary problem has to do with the case where a third-party is able to distinguish between the 
different identities the user owns or represents themselves as in the Metaverse and the real world. A stronger variant 
of Zhuangzi’s secondary problem refers to a case where a third-party can distinguish between the different identities 
the user owns or represents themselves as within the Metaverse. First and secondary problems together with their 
stronger variants form the Redfield-Zhuangzi Matrix: 
 

 No First 
Problem (I) 

Redfield’s First 
Problem (II) 

Stronger Variant 
of Redfield’s 
First Problem 
(III) 

Zhuangzi’s First 
Problem (IV) 

Stronger Variant 
of Zhuangzi’s 
First Problem 
(V) 

No Secondary 
Problem (A) A-I A-II A-III A-IV A-V 

Redfield’s 
Secondary 
Problem (B) 

B-I B-II B-III B-IV B-V 

Stronger 
Variant of 
Redfield’s 
Secondary 
Problem (C) 

C-I C-II C-III C-IV C-V 

Zhuangzi’s 
Secondary 
Problem (D) 

D-I D-II D-III D-IV D-V 

Stronger 
Variant of 
Zhuangzi’s 
Secondary 
Problem (E) 

E-I E-II E-III E-IV E-V 

 
Figure 1: Redfield-Zhuangzi Matrix 

 
The matrix above is useful in classifying different kinds of Metaverse applications. The red columns (IV and 

V) are associated with Metaverse applications where users are artificially dissociated from their previous and/or real 
selves. The fictional video game “Roy: A Life Well Lived” from “Rick and Morty” (Adult Swim, 2015) is an example7. 
The yellow columns (II and III) refer to Metaverse applications in which the users are either unaware that they are 
within the Metaverse, or they cannot distinguish between the different virtual worlds within the Metaverse. The horror 
game from Black Mirror’s “Playtest” episode (Netflix, 2016) is an example. The blue column (I) contains Metaverse 
applications where the users are sovereign8. The Metaverse of the “Ready Player One” (Cline, 2017) is in the I column. 
 

While columns represent levels of awareness, rows represent levels of privacy. Rows D and E represent 
Metaverse applications where users can be easily identified. This happens when lack of encryption allows a third party 
to infer a user's identity based on their digital footprint. Rows B and C represent Metaverse applications where the 
users can be easily located. This happens when the user is forced to share their identity across distinct virtual worlds. 
Row A represents Metaverse applications where the users can selectively reveal their location and identity to those that 
they trust. 

 
 

8 Sovereignty holds in cases where users are manipulated by other agents. Unawareness and dissociation must be 
induced by the application. 

7 Interestingly Rick seems to be unaffected by the device. Also, cf. episode “Puhoy” of “Adventure Time” (Cartoon 
Network, 2013). 
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Traditional Metaverse applications employ a mode of operation where users are authenticated by trusted 
servers where: 
 

1.​ The user shares their identity across virtual worlds. 
2.​ No encryption is provided to remedy the privacy implications of computing on unencrypted data. 

 

 
 

Figure 2: Traditional Metaverse Applications 
 

In Figure 2, there is a bi-directional transfer of DATA between the USER and the SERVER over an insecure 
channel. DATA is encrypted during transit, and upon its arrival to the SERVER, it is decrypted and computed upon. The 
goal is to prevent the ADVERSARY from reading and writing to DATA. This is achieved by securing the connection 
between the USER and the SERVER via a cryptographic protocol like TLS (Rescorla, 2018). Each SERVER gains its 
competitive advantage by the large amounts of DATA it collects from each USER and its ability to process it. 
 

Hades protocol drops the distinction between the SERVER and the ADVERSARY: 
 

 
 

Figure 3: Hades protocol 
 

In Figure 3, there is a bi-directional transfer of DATA between one of the virtual identities owned by the USER 
and the ADVERSARY over an insecure channel. DATA is encrypted during transit, and upon its arrival to the 
ADVERSARY, it remains encrypted. An authenticated ADVERSARY is prevented from reading from DATA, while an 
unauthenticated ADVERSARY is also prevented from writing to DATA9. Each ADVERSARY gains its competitive 
advantage by its ability to process varying types of encrypted DATA. 
 

The goal of the Hades protocol is to enable adversarial machines to become arbiters ignorant of that which 
they arbitrate. I call this Programmable Blind Arbitration, or PBA for short. 

9 Unless otherwise specified, in this paper all mentions of ADVERSARY refer to the authenticated ADVERSARY. Hadean 
adversaries are honest-but-curious (Paverd et al., 2014), sometimes also called semi-honest. 
   
 

3 



 

Hades solves Redfield’s first problem and its stronger variant by assigning a universally unique identifier 
(UUID) to each virtual world, by explicitly notifying the user when there is a transition between two distinct virtual 
worlds10, or between a virtual world and the real world11, and by disabling blending12. Together they form the first three 
epistemological guarantees of the Hades protocol: 
 

1.​ Each virtual world is unique and different from each other and the NULL WORLD (uniqueness). 
2.​ Each transition between two distinct virtual worlds or between a virtual world and the NULL WORLD is made 

explicit (explicitness). 
3.​ No blending is allowed between a virtual world and the NULL WORLD, or between two distinct virtual worlds 

(separateness)13. 
 
Hades solves Zhuangzi’s first problem and its stronger variant by assigning a UUID to each virtual identity, by 

explicitly notifying the user when there is a transition between their two distinct virtual identities14, or between their 
virtual identity and real identity15, and by disabling blending16. Together they form the next three epistemological 
guarantees of the Hades protocol: 
 

4.​ Each virtual identity is unique and different from each other and the NULL IDENTITY (uniqueness). 
5.​ Each transition between two distinct virtual identities or between a virtual identity and the NULL IDENTITY 

is made explicit (explicitness). 
6.​ No blending is allowed between a virtual identity and the NULL IDENTITY, or between two distinct virtual 

identities (separateness)17. 
 

Hades solves Redfield’s secondary problem and its stronger variant by decoupling the USER from the virtual 
identities that they own. There is no relationship between distinct virtual identities other than the fact that they may 
belong to the same USER. The real identity of the owner of a given virtual identity, i.e. USER, is withheld from the 
ADVERSARY18. 
 

Hades solves Zhuangzi’s secondary problem and its stronger variant by its use of end-to-end encryption. 
E2EE enables each USER to share their DATA only and only with those that they trust. This prevents the ADVERSARY 
from inferring the identity of the USER based on their DATA. Hades protocol achieves this by use of Local and Shared 
Programmable States, which we define next: 
 

Let 𝛺1, 𝛺2, …,  𝛺n be virtual identities and let 𝛩 be a Shared Programmable State (SPS) which is a set of some 
arbitrary number of states 𝛷1, 𝛷2, …, 𝛷n such that each state 𝛷i denotes some state variable relevant to the SPS, e.g. 
position vector of the virtual identity 𝛺i at time 𝑡. Let 𝑍1, 𝑍2, …, 𝑍n be a list of rules that 𝛩 must obey, e.g. 𝒚 value of the 
position vector cannot be negative. Let 𝓗 be a function that, given 𝛺1, 𝛺2, …,  𝛺n, can compute the given state transition 
(𝛩i →𝛩k) valid under the rules 𝑍1, 𝑍2, …, 𝑍n while having access to neither 𝛩i nor 𝛩k. I call 𝓗 the Hadean function. 𝓗 allows 
the ADVERSARY to compute the state transition (𝛩i →𝛩k) while knowing neither 𝛩i nor 𝛩k. This is how the Hades 
protocol achieves PBA19. 𝓗 function is defined as: 
 

𝓗SK : Enc(𝛩i) → Enc(𝛩k) 
 
where Enc is a function that encrypts the given 𝛩 under the secret key SK. I assume that there is a corresponding Dec 
function such that: 

19 When Z = ∅, we get a NULL SPS, which is useful in cases where no moderation is necessary. 

18 See Appendix A to see cases where this can be bypassed. 

17 This refers to augmented identity (AI) where the elements of some virtual identity or identities are overlaid on top of 
or mixed with a different virtual identity or the real identity. 

16 This has the effect of disabling augmented identity (AI). 

15 The real identity is assigned the UUID of 0, i.e. NULL. In this paper the real identity may also be referred to as the NULL 
IDENTITY, or simply the “user identity”. Updates to the real identity don’t change its UUID. 

14 The UUIDs of virtual identities are constant – one can only create or destroy virtual identities. 

13 This refers to augmented reality (AR) where the elements of some virtual world or worlds are overlaid on top of or 
mixed with a different virtual world or the real world. 

12 This has the effect of disabling augmented reality (AR). 

11 The real world is assigned the UUID of 0, i.e. NULL. In this paper the real world may also be referred to as the NULL 
WORLD. Updates to the real world don’t change its UUID. 

10 The UUIDs of virtual worlds are constant – one can only create or destroy virtual worlds. 
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𝛩 ≅ Dec(Enc(𝛩))20 
 

Suppose 𝛺1 = Ἀχιλλεύς is playing chess with 𝛺2 = Πάτροκλος. Chess is a turn-based game with a predefined list of 
rules (𝑍1 = “bishops can only move diagonally”, 𝑍2 = “pawns can only move forward”, etc.) and win/lose conditions21. 
Whenever Ἀχιλλεύς or Πάτροκλος makes a move, there is a transition in the state of the game. The role of the 𝓗 function is 
to compute a valid state transition (𝛩i →𝛩k) while knowing neither 𝛩i nor 𝛩k. 𝓗 allows Ἀχιλλεύς and Πάτροκλος to play a 
game of chess without revealing the positions of the pieces nor the result of the move to the ADVERSARY in whose 
machine it is executed. 
 

In order for virtual identities to own and control avatars and other interactable and non-interactable objects 
and share them with each other the Hades protocol offers Local Programmable States (LPS). 
 

 
 

Figure 4: Local Programmable States 
 

In Figure 4, LPS #0 is the avatar of USER A, LPS #1 is the avatar of USER B, and LPS #2 is the avatar of USER 
C. Naturally LPSs contain not only the data required to render the avatars, but also scripts to add programmable 
functionality. In the case of an avatar, the script may listen for user input and run an animation. The scripts are run in 
the owner’s machine. The data contained within LPSs are used by the client to render the model, play sounds, etc. An 
LPS is always owned by a VID. There are no orphan LPSs. Each LPS contains a state that is updated by the owner of the 
LPS and shared with others in the same SPS session. The ADVERSARY holds a table linking each LPS to a 
corresponding VID, but the ADVERSARY doesn’t know what’s inside the LPS – it simply listens for state changes from 
its owner and then broadcasts the new state to everyone else within the same SPS session. The contents of LPSs are 
hidden from the ADVERSARY. Only the owner of an LPS is allowed to write to its state, but anyone within the same SPS 
session can read it. Each VID is allowed to own more than one LPS, but each VID must own at least one LPS. 

 
Note that in Figure 4 USER C is running two clients simultaneously. If these SPS sessions are chess games, 

then USER C is playing two E2EE chess games with users A and B at the same time with different VIDs. Even if USER C 
uses the same LPS for each of these games, because they belong to different sessions, the ADVERSARY is unable to link 
them together22. 

22 One could argue that the ADVERSARY may link the two different VIDs of USER C based on the IP address that they 
most likely share, but IP addresses alone are insufficient to resolve the ambiguity. See Appendix A for further discussion. 

21 For the sake of simplicity I will ignore other possible outcomes like draws and stalemates. 

20 For this paper it is sufficient that the decryption of Enc(𝛩) is approximately equal to 𝛩. 
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I categorize Metaverse applications with sovereign users as X-I where X corresponds to one of the rows { A, B, 
C, D, E } and I refers to the leftmost column of the RZ matrix. Thus the Hadean Metaverse is a Class X-I Metaverse. 
 

Parameters 
 

Implementations must decide on the following parameters: 
 

Name Definition 

info An ASCII string identifier for the application 

hash A cryptographically-secure hash function, e.g. BLAKE2b (Aumasson et al., 2013) 

kdf A key derivation function that generates a key from a given password and random 
nonce, e.g. Argon2id1323 (Biryukov et al., 2015) 

hkdf HMAC-based extract-and-expand key derivation function, e.g. HKDF-SHA256 
(Krawczyk et al., 2010) 

pqkem A post-quantum key encapsulation mechanism, e.g. Crystals-Kyber-1024 (Bos et 
al., 2017) 

pqdss A post-quantum digital signature scheme, e.g. Crystals-Dilithium-5 (Ducas et al., 
2017) 

aead A scheme for authenticated encryption with associated data, e.g. 
ChaCha20-Poly130524 (Nir et al., 2018) 

kex An Elliptic Curve based key exchange mechanism, e.g. X25519 (Josefsson et al., 
2018) 

dss An Elliptic Curve based digital signature scheme, e.g. Ed25519 (Ibid.) 

fhe A fully-homomorphic encryption scheme, e.g. CKKS (Cheon et al., 2017)25 

 
I have programmed two separate implementations: one for the client and one for the server, which I’ve 

named Charon26 and Minos27, respectively. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

27 Minos is named after Μίνως – king of Crete, son of Zeus and Europa. 

26 Charon is named after Χάρων – the psychopomp and the ferryman of the ancient Greek Underworld.  

25 Both Charon and Minos use the full RNS variant (Cheon et al., 2018). 

24 Both Charon and Minos use the XChaCha20-Poly1305 variant (Arciszewski, 2020). 

23 Charon supports both Argon2i13 and Argon2id13, but uses Argon2id13 by default. 
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Cryptographic Notation 
 

Name Definition 

X || Y Concatenation of two byte sequences X and Y 

(Y) = HASH(X) Output Y of the chosen cryptographically-secure hash function where X is an 
arbitrary-long sequence of bytes 

(SK) = KDF(P, S) Output of the chosen key derivation function where P is the password, S is the salt, 
and SK is the secret key 

(SK) = HKDF(IKM, S, CTX) Output of the chosen HMAC-based extract-and-expand key derivation function 
where IKM is the input key material, S is the salt, and CTX is the ASCII string 
description of the secret key SK 

(CT, SS) = PQKEM-ENC(PK) Output of the chosen post-quantum key encapsulation function, where SS is the 
shared secret encapsulated by the ciphertext CT using the public key PK 

(SS) = PQKEM-DEC(SK, CT) Output of the chosen post-quantum key decapsulation function, where SS is the 
shared secret encapsulated by the ciphertext CT, and SK is the secret key 

(SIG) = PQDSS-SIGN(M, SK) Signature SIG produced by the chosen post-quantum digital signature scheme, 
given plaintext M and secret key SK 

PQDSS-VERIFY(SIG, M, PK) Verification (TRUE or FALSE) by the chosen post-quantum digital signature 
scheme, given the signature SIG, the plaintext M, and the public key PK 

(CT) = AEAD-ENC(SS, M, N) Output of the encryption function of the chosen AEAD scheme, where SS is the 
shared secret, M is the plaintext, N is the nonce, and CT is the ciphertext 
containing an authentication tag 

(M) = AEAD-DEC(SS, CT, N) Output of the decryption function of the chosen AEAD scheme, where SS is the 
shared secret, CT is the ciphertext containing an authentication tag, N is the 
nonce, and M is the plaintext 

(SIG) = DSS-SIGN(M, SK) Signature SIG produced by the chosen digital signature scheme, where M is the 
plaintext, and SK is the secret key 

DSS-VERIFY(SIG, M, PK) Verification (TRUE or FALSE) by the chosen digital signature scheme, where SIG is 
the signature, M is the plaintext, and PK is the public key 

(SS) = DH(PK1, PK2) Output of the Elliptic Curve Diffie-Hellman function where SS is the shared secret, 
and PK{1,2} are the public keys representing the corresponding key-pairs 

(CT) = FHE-ENC(M, PK) Output of the encryption function of the chosen FHE scheme, where M is the 
plaintext, PK is the public key, and CT is the ciphertext 

(M) = FHE-DEC(CT, SK) Output of the decryption function of the chosen FHE scheme, where CT is the 
ciphertext, SK is the secret key, and M is the plaintext 

(CT2) = FHE-EVAL(M, CT1, F, 
HEPUB{1..N}) 

Encrypted output of the function F on the plaintext M and the ciphertext CT1, using 
public parameters HEPUB{1..N}, resulting in another ciphertext CT2 

(CT3) = FHE-EVAL(CT1, CT2, F, 
HEPUB{1..N}) 

Encrypted output of the function F on two ciphertexts CT{1,2}, using public 
parameters HEPUB{1..N}, resulting in another ciphertext CT3 
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User Identity 
 

Hadean clients maintain a User.json28 file that contains the following fields: 
 

Name Definition 

version Version of the protocol encoded as a uint32_t29 value30 

kdf ID of the KDF encoded as a uint32_t value31 

cpu CPU intensity of the KDF encoded as uint64_t 

memory Memory intensity of the KDF encoded as uint64_t 

salt Salt value encoded in padded URL-safe base64 string32 

vids Array of virtual identities 

extensions Array of extensions used by the client33 

 
User.json makes it easy for users to migrate from one client to another. Access to User.json is regulated by the 

OS, where each user can parse only the User.json that they own34. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

34 It is recommended that clients change the permissions of the User.json so that only its owner can read/write it. Clients 
that run on UNIX should follow the XDG Base Directory Specification (Bastian et al., 2021) and place the User.json file in 
$XDG_CONFIG_HOME/$CLIENT_NAME. 

33 Each client is free to define its own extensions. For instance, Charon defines creation_date, update_date, and a bunch 
more to store parameters such as usage statistics, graphical options, language, security preferences, etc. The client may 
also offer an option to encrypt such information under a different key to make it inaccessible to other clients. 

32 This corresponds to the sodium_base64_VARIANT_URLSAFE enum from the libsodium library (libsodium.org). 

31 0 is Argon2I13 and 1 is Argon2ID13. 

30 Hades protocol uses semantic versioning as defined in (semver.org) where MAJOR is specified in the most significant 8 
bits, PATCH in the least significant 16 bits, and MINOR in the remaining 8 bits. 

29 The referenced integral data types are those defined in the stdint.h header (part of the C library). 

28 All human-readable text files are stored in the JSON format (Ecma International, 2017). 
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Virtual Identities 
 

Before users can connect with each other they need to generate their virtual identities. Each virtual identity 
has the following fields: 
 

Name Definition 

nickname Human-readable nickname for the VID encoded as a UTF-8 string (Yergeau, 2003) 

pqdss_pub Public key associated with PQDSS encoded in padded URL-safe base64 string 

pqdss_pri Encrypted private key associated with PQDSS encoded in padded URL-safe base64 
string 

pqdss_nonce Nonce value used for the encryption of pqdss_pri encoded in padded URL-safe 
base64 string 

dss_pub Public key associated with DSS encoded in padded URL-safe base64 string 

dss_pri Encrypted private key associated with DSS encoded in padded URL-safe base64 
string 

dss_nonce Nonce value used for the encryption of dss_pri encoded in padded URL-safe 
base64 string 

friends Array of friends that belong to this virtual identity where each element is a public 
identity 

 
 

Public Identities 
 

Users connect with each other by sharing their public identities35. Each public identity is generated from a 
given virtual identity, and its fields are defined below: 
 

Name Definition 

version Version of the protocol encoded as a uint32_t value 

pqdss_pub Public key associated with PQDSS encoded in padded URL-safe base64 string 

dss_pub Public key associated with DSS encoded in padded URL-safe base64 string 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

35 Public identities can be shared in person, or via an authenticated channel. 
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Hadean Transmission Format 
 

In order to facilitate efficient exchange of data between users I introduce a new format based on some 
modifications of the glTF™ 2.0 specification36 (The Khronos® 3D Formats Working Group37, 2021), which I have 
named the Hadean Transmission Format, or HTF for short. Below is shown the relations between top-level objects in an 
HTF asset: 
 

 
 

Figure 5: HTF Object Hierarchy 
 

Note that some glTF constructs like cameras and images are removed. Below is a non-exhaustive list of 
differences between glTF and HTF: 
 

●​ File extension is changed to .htfl for Local Programmable States and .htfs for Shared Programmable States. 
●​ Only one scene is allowed. The “scenes” array is removed and the “scene” property contains all the nodes. 

“scene” property is mandatory. 
●​ “uri” property is removed. Data cannot be embedded inside the JSON. External references are disallowed. 
●​ “source” property in the texture object is replaced with the “bufferView” property. 
●​ “mimeType” property is removed from the texture objects. 
●​ All textures must be stored in the KTX™ 2.0 format38 (The Khronos® Group Inc., 2024)39. 
●​ “byteLength” is uint64_t. 
●​ Wherever possible, all OpenGL40 constants are replaced with their Vulkan41 equivalents. 
●​ state construct is added to support Local and Shared Programmable States. 

 
 
 
 

41 Vulkan is a registered trademark and the Vulkan SC logo is a trademark of the Khronos Group Inc. 

40 OpenGL® and the oval logo are trademarks or registered trademarks of Hewlett Packard Enterprise in the United 
States and/or other countries worldwide. 

39 HTF implicitly requires the “KHR_texture_basisu” extension. 

38 KTX and the KTX logo are trademarks of the Khronos Group Inc. 

37 Khronos and the Khronos Group logo are registered trademarks of the Khronos Group Inc. 

36 glTF and the glTF logo are trademarks of the Khronos Group Inc. 
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All HTF files are binary and are structured as shown below: 
 

magic 
(uint32_t) 

version 
(uint32_t) 

length 
(uint64_t) 

script 
(uint8_t[]) 

data 
(uint8_t[]) 

 
Figure 6: HTF File Layout42 

 
●​ magic: must be 0x4C465448 for .htfl files and 0x53465448 for .htfs files. 
●​ version: this indicates the version of the HTF file format43. 
●​ length: size of the file in bytes (including the header). 
●​ script: a block that contains the Lua script (lua.org). 
●​ data: a block that contains the actual payload. 

 
 

script block contains the Lua source file that adds programmable functionality and contains the following 
fields: 
 

source_length 
(uint64_t) 

source 
(uint8_t[]) 

 
Figure 7: Script Block 

 
●​ source_length: size of the source block in bytes (including the header). 
●​ source: Lua source code. 

 
 
​ data block contains the actual payload: 
 

json_length 
(uint64_t) 

json 
(uint8_t[]) 

bin_length 
(uint64_t) 

bin 
(uint8_t[]) 

 
Figure 8: Data Block 

 
●​ json_length: size of the json block in bytes. 
●​ json: represents the JSON part of the HTF file. 
●​ bin_length: size of the raw data block in bytes. 
●​ bin: represents the raw data part of the HTF file. 

 
​  

In addition to the changes specified above, HTF also introduces the state construct into the glTF specification, 
the role of which depends on whether the given HTF represents an SPS or an LPS. 
 
 
 
 
 
 
 
 
 
 

43 HTF files use semantic versioning as defined in (semver.org) where MAJOR is specified in the most significant 8 bits, 
PATCH in the least significant 16 bits, and MINOR in the remaining 8 bits. 

42 Each HTF file has a 16-byte header. 

   
 

11 



 

Local Programmable States 
 

To support programmable behavior the Hades protocol makes use of Local Programmable States, shortened to 
LPS, which are identified by the 0x4C465448 magic number in the first 4 bytes of the header. Additionally, the “id” 
field of the state object is 0. The goal of the state object is two-fold: 

 
1.​ Establish semantic relationships between the state variables and the corresponding properties of the HTF 

object44, 
2.​ Send the values of the state variables from their owners to the other VIDs. 

 
By properties of the HTF object I mean the properties of its children, e.g. its transform, materials, samplers, 

animations, etc. By state variables I mean the data that is used by the script to modify the aforementioned properties.  
The script can influence the properties of the HTF object only and only through these state variables. Furthermore, the 
values of the state variables are sent via the ADVERSARY to the other participants of the SPS session. Only the owner of 
an LPS is allowed to update its state variables, everyone else can read them. 

 
The ADVERSARY pre-allocates blocks of memory to store the encrypted values of the state variables45. It 

listens for changes in the state variables from the owner of the LPS, and then propagates them to the other participants 
of the SPS session. The ADVERSARY is incapable of reading the state variables, it can only transfer them. 

 
State variables are declared within the state object, where each variable defines the top-level category of the 

object being read/modified, its index, and type: 
 
{ 
    “state”: { 
        “id”: 0, ​ ​ ​ /* Always 0 for LPSs */ 
        “character_position”: { ​ /* Name of the state variable */ 
            “category”: NODE,​​ /* Name of the top-level category */ 
            “index”: 10, ​ ​ /* Its index in the array */ 
​      “type”: TRANSLATION​ /* Its type */ 
        }, 
​ “helmet_material”: { 
​     “category”: MATERIAL, 
​     “index”: 2, 
​     “type”: PBR_METALLIC_ROUGHNESS 
 ​ }, 
​ /* etc. */ 
    }, 
    /* other properties here */ 
} 

 
The state object declares variables that are to be accessible to the script46. For each variable we name its 

category which is the name of the top-level object in an HTF file. Then we specify its index in the corresponding array, 
and finally declare its type. The type of the state variable can either be explicit, i.e. they can be found by reading the JSON 
part of the HTF file, or they can be implicit, in which case they reference properties that, while not specified in the HTF 
file, are still assumed to exist: 

 

46 Though not required, it is recommended to use meaningful names when declaring variables, as I have done here. 

45 Hadean adversaries may compete with each other with respect to how much memory they can pre-allocate to their 
users. They may even charge their users for more memory. 

44 Semantic relationships allow Hadean clients to interpret a state variable based on its type property. For example, if the 
type is specified as TRANSLATION, then the client knows that it must modify a 3-element array containing 
floating-point values, if the type is PBR_METALLIC_ROUGHNESS, then it must modify a struct, etc. In memory these 
properties live inside the instances of the various components attached to the LPS, e.g. transform component, render 
component, particle component, etc. Changing the value of the property thus changes the value in memory, not the 
actual HTF file. 
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Figure 9: Explicit & Implicit Properties 
 
In Figure 9 the state variable character_position is referencing the translation property found in the fourth 

index of the nodes array. Modifying this variable in the script will change the position of the character. The state 
variable character_idle_anim is referencing the state property in the sixth index of the animations array, which doesn’t 
exist in the HTF file, but is assumed to exist by the script. Modifying this variable in the script will change the state of 
the animation47. 

 
Inside the script there are two functions named start and update. The start function is used to initialize the 

values of the state variables and is run only once, whereas the update function is run every frame. These are standard 
constructions that are found in many game engines that game developers are familiar with. Below is an example of a 
script that modifies the state variables mentioned in Figure 9: 
 
function start() 
    character_position = vector3(0.0, 2.0, 0.0) 
    character_idle_anim = anim_state.stop 
end 
 
function update(dt) 
    local velocity = vector3.zero() 
    if input[“w”] and input[“pressed”] then 
        character_idle_anim = anim_state.run 
        velocity = vector3.forward() * dt 
    else 
        character_idle_anim = anim_state.stop 
    end 
    character_position = character_position + velocity 
end 

 
In the script above variables are references to those in the state object. The programmer is free to declare her 

own variables as needed. This is a tiny script that allows the LPS to move only forward, which is unsuitable for most 
users. But it does illustrate the gist of what a script must do: 1) read user input, 2) update the relevant state variables. 
Once the state variables have been updated, the owner of the LPS can immediately see their effect on her own machine. 
In order for the other VIDs to see the same effect the values of the state variables must be copied to their machines: 

47 See Charon’s source code to see the list of variables defined as explicit vs implicit: github.com/saccharineboi/Charon 
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Figure 10: Sharing of state variables 
 
The figure above shows the process by which the values of the state variables are copied to other users’ 

machines. Note that in this case we focused on the state variables of USER A, but this process applies to the state 
variables of USER B as well. Here is the description of each of the steps specified in Figure 10: 

 
1.​ User input originates from an input device. This can be a keyboard, mouse, joypad, full-body tracker, etc. 
2.​ Input is processed by the script in the LPS owned by USER A, which causes modification in the state variables 

of the LPS. 
3.​ USER A immediately sees the effects of the modifications done in step 2. 
4.​ New values of the state variables are sent to the ADVERSARY, who stores them inside a block of memory 

pre-allocated for USER A. 
5.​ The ADVERSARY transmits the new state variables to USER B. 
6.​ The new values are processed by the client of USER B. 
7.​ USER B now sees the effects of the modifications done in step 2. 

 
​ Note that the steps 3 and 4 are concurrent. Naturally there is some delay between when the client of USER A 
modifies the state variables and when USER B sees the result. The delay between steps 2 and 3 depends on the 
performance of the client of USER A, whereas the delay between steps 3 and 7 depends on many more factors, some of 
which are network-related. The ADVERSARY is incapable of reading the contents of these state variables due to 
end-to-end encryption48. 
 
​ Local programmable states are useful when VIDs wish to share their own data with other VIDs, but they 
become unsuitable when VIDs wish to modify the data owned collectively by everyone. 
 
 
 
 
 
 
 
 

48 Because of AEAD nor can it modify them. 
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Shared Programmable States 
 

To support a shared world state the Hades protocol makes use of Shared Programmable States which are 
identified by the 0x53465448 magic number in the first 4 bytes of the header. Like LPSs the SPSs also contain the state 
object. The goal of the state object is three-fold: 
 

1.​ Establish semantic relationships between the state variables and the corresponding properties of the HTF 
object (same as the LPS), 

2.​ Allow VIDs within the same SPS session to propose changes to the values of the state variables that they all 
collectively own, 

3.​ Enable the ADVERSARY to verify the proposed changes. 
 

The “id” field of the HTF object is an uint32_t that identifies the 𝓗 function to be executed by the 
ADVERSARY. The values are standardized according to the following table: 

 

Value Purpose 

0 Identifies Local Programmable States 

1 Specifies a NULL SPS, where 𝓗 = nop 

2 - 65535 Specifies a standardized 𝓗 function 

65536 - 4294967295 Specifies a custom 𝓗 function 

 
​ The value 0 is used to identify Local Programmable States. The value 1 specifies a NULL SPS, which is a special 
kind of 𝓗 function that returns its input as it is (identity). The range [2, 65535] defines a list of standardized 𝓗 
functions that the ADVERSARY is required to support49. The range [65536, 4294967295] defines a list of custom 𝓗 
functions that the ADVERSARY may optionally support50. 
 
​ SPSs also declare state variables that are similar to the ones defined by LPSs, however, the state variables 
defined within SPSs are shared, in the sense that they refer to a property of a virtual world that all VIDs within the same 
SPS session inhabit. Therefore modification of the state variable(s) affects the virtual world. Whether VIDs take turns to 
modify the state variables or do so concurrently depends on the “id” field of the HTF object: 
 
{ 
    “state”: { 
        “id”: 2, ​ ​ ​ /* Specifies CHESS_ILLEGAL_LEGAL_CHECKMATE_WHITE_BLACK */ 
        “white_rook_position”: { 
            “category”: NODE, 
            “index”: 234, 
​      “type”: TRANSLATION, 
        }, 
​ /* etc. */ 
    }, 
    /* other properties here */ 
} 
​  

HTF files that contain SPSs tend to be much larger than those that store LPSs due to virtual worlds usually 
having many more components (i.e. meshes, textures, etc.) than the avatars owned by the VIDs. Similar to LPSs, the 
state variables in SPSs can also refer to implicit properties. But unlike LPSs, the scripts contained within SPSs have a 
different structure: 

50 Custom 𝓗 functions allow adversaries to offer new functionality that may not be standardized due to hardware 
restrictions or other reasons. 

49 Adversaries may compete with each other based on how many standardized 𝓗 functions they support in addition to 
how well they support them. 

   
 

15 



 

 
EMPTY_SQUARE_ID = 0.0 
WHITE_ROOK_ID = 4.0 / 8.0 
BLACK_ROOK_ID = -4.0 / 8.0 
 
SQUARE_POSITIONS = { 
    square_a1_position, 
    square_b1_position, 
    -- other 62 remaining squares 
} 
 
function update_state_vars(h_in) 
    for i = 1, 64 do 
        h_in[i] = h_in[i + 64] 
    end 
    for i = 1, 64 do 
        if h_in[i] == WHITE_ROOK_ID then 
            white_rook_position = SQUARE_POSITIONS[i] 
        elseif h_in[i] == BLACK_ROOK_ID then 
            black_rook_position = SQUARE_POSITIONS[i] 
        end 
    end 
end 
 
function consume(h_out, h_in) 
    if h_out[0] > h_out[1] then 
        lamp_color = vec3(0.0, 1.0, 0.0) 
    else 
        lamp_color = vec3(1.0, 0.0, 0.0) 
    end 
    update_state_vars(h_in) 
end 
 
function construct_h_in(h_in, piece_id, old_pos, new_pos) 
    for i, square in SQUARE_POSITIONS do 
        if old_pos == square.position then 
            h_in[i + 64] = EMPTY_SQUARE_ID 
        elseif new_pos == square.position then 
            h_in[i + 64] = piece_id 
        end 
    end 
end 
 
local saved_position = nil 
 
function produce(h_in, dt) 
    if input[“mouse_left”] then 
        local new_ray = ray.shoot(camera.position, camera.direction) 
        local intersected_node = new_ray.intersect(world) 
        if intersected_node ~= nil then 
            if saved_position == nil and intersected_node.position == white_rook_position then 
                saved_position = white_rook_position 
            elseif saved_position ~= nil and intersected_node.position ~= white_rook_position then 
                construct_h_in(h_in, WHITE_ROOK_ID, saved_position, intersected_node.position) 
                h_in.submit() -- async call 
                saved_position = nil 
            end 
        end 
    end 
end 
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The scripts within SPSs have two special functions: 
 

●​ consume function takes the output (h_out) produced by the ADVERSARY and updates the world accordingly. 
In this case if the condition h_out[0] > h_out[1] is true then the move made by the opponent is assumed to be 
legal. This causes a lamp placed somewhere in the world to shine green. Otherwise the light will turn red. 
Then it calls the user-defined update_state_vars function which updates the state of the board. This function 
is invoked when a new h_out is received by the ADVERSARY. 

●​ produce function constructs a new input (h_in) that will be consumed by the ADVERSARY to produce the next 
output (h_out). To do so it must listen for user input, do some game logic and decide what needs to be 
updated. Once it has finished its job it calls h_in.submit() which sends the newly constructed input (h_in) to 
the ADVERSARY. The call h_in.submit() returns immediately. This function is invoked every frame for the 
active VID51. 

 
h_in and h_out are the input and the output of the 𝓗 function, respectively. Their types, lengths, the range of 

values that they hold, etc. is determined by the “id” field of the state object. Unlike LPSs no memory is preallocated to 
store the state variables by the ADVERSARY. For SPSs the ADVERSARY allocates enough memory to store h_in and 
h_out and the public parameters of the chosen FHE scheme only. For NULL SPSs no memory allocation occurs. These 
scripts are executed by all VIDs, but the 𝓗 function is executed only by the ADVERSARY. 

 
Note that the encryption and decryption of h_in and h_out are transparent to the programmer. The 

execution of cryptographic functions is solely the responsibility of the client. 
 

 
 

Figure 11: The 𝓗 function 
 

​ The figure above shows the process by which the 𝓗 function computes a new world state (h_out) given the 
previous world state (h_in). Note that in this case we focused on the modification of the world state by USER A, but 
this process applies to the modifications of USER B as well. Here is the description of each of the steps specified in 
Figure 11: 
 

1.​ User input originates from an input device. This can be a keyboard, mouse, joypad, full-body tracker, etc. 
2.​ Input is processed by the script of the SPS by the client of USER A (the active VID), which constructs a new 

world state (h_in) based on the output of step 1. 
3.​ The newly constructed world state (h_in) is sent to the ADVERSARY. 

51 By active VID I mean the VID who must make the next move. For some SPSs all VIDs may be active. 
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4.​ The ADVERSARY executes the 𝓗 function on h_in, producing h_out. 
5.​ The output of the 𝓗 function is sent to the client of USER A (the active VID), which then uses it to modify the 

state variables of the SPS. 
6.​ The output of the 𝓗 function is sent to the client of USER B (the passive VID), which then uses it to modify the 

state variables of the SPS. 
 
​ In the beginning of a new SPS session the ADVERSARY initializes h_in and h_out and sends their default 
values to the VIDs, who then consume the values and update the relevant state variables. Based on the “id” field of the 
SPS the ADVERSARY then determines whose proposed changes he is willing to accept and verify. The VIDs who must 
make the next move are notified. These VIDs are called active VIDs. The ADVERSARY waits for the active VIDs to send 
their proposed changes. Meanwhile passive VIDs wait for their turn. The active VIDs invoke the produce function and 
send the new input (h_in) to the ADVERSARY, who then executes the 𝓗 function and submits the output (h_out) to all 
VIDs. Based on the “id” field of the SPS the ADVERSARY then determines and notifies the new active VIDs. This goes 
on until either the ADVERSARY or one of the VIDs terminates the session. Communication between the ADVERSARY 
and the VIDs is standardized by the use of special constants: 
 

Name Value Description 

H_OK 0 Successful execution 

H_WARN 1 Input is invalid, but executed 
anyway52 

H_ERR 2 Execution halted due to an error 

H_TERM 3 The session has been terminated by 
the ADVERSARY 

H_VID_TERM 4 The session has been terminated by 
the other VID 

H_VID_TIMEOUT 5 The other VID failed to send h_in 
after TIMEOUT milliseconds 

H_AUTH_ERR 6 Authentication failed 

H_VID_AUTH_ERR 7 The other VID failed to authenticate 

 
​ It would be more prudent to group these codes into their own categories, similar to HTTP codes. Note that 
these codes don’t carry additional messages. In case there are more than two VIDs, H_VID_AUTH_ERR won’t tell us 
who exactly failed to authenticate unless the session is between two VIDs. In any case, the list is incomplete. 
 
​ The script in page 16 doesn’t reveal anything about how the values of h_in and h_out are hidden from the 
ADVERSARY. This is because the encryption and the decryption of h_in and h_out are carried out by the client 
unbeknownst to the script. The values of h_in are encrypted after the h_in.submit() executes. The encrypted values of 
h_out are decrypted before the script executes. 
 
​ When the “id” field equals 1 a special kind of session called the NULL SPS session is initiated where the 𝓗 
function becomes an identity function. The NULL SPS is useful in cases where the VIDs are only interested in 
exchanging E2EE data. Any SPS can be turned into a NULL SPS. 
 

In the Hadean Metaverse the virtual worlds are designed around the “id” field, e.g. for values that denote 
chess the virtual world contains a chess board and pieces that can be manipulated by the VIDs. Note that the VIDs 
aren’t required to use the same virtual world, only one that is compatible53. 

 

53 Two virtual worlds are compatible when they share the same state variables and their “id” fields are equal. 

52 This error code is interesting because the ADVERSARY isn’t aware that it produced it. 
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Obols 
 
​ Before the SPS session can commence the VIDs must find and request an ADVERSARY to be their arbiter. A 
special file must be created which includes the following fields: 
 

Name Description 

version Version of the protocol encoded as a uint32_t value 

id The “id” of the SPS encoded as a uint32_t value 

vids Array of public identities for corresponding VIDs 

passphrase Secret passphrase known by the VIDs encoded as an ASCII string54 

fhe_pub Public parameters of the FHE scheme 

ttl Expiry date of the Obol expressed in Unix milliseconds and encoded as a 
uint64_t value 

extensions List of extensions requested by the VIDs55 

 
​ This file is called an Obol56. The act of creating an Obol is called minting an Obol. Obols must be minted by the 
VIDs and sent to the ADVERSARY over a secure connection. The act of evaluating an Obol is called assaying an Obol. The 
ADVERSARY who assays an Obol may reject it for a variety of reasons, including: 
 

●​ The Obol may contain invalid information, e.g. it may declare a value for a version that is not supported. 
●​ The Obol may be badly constructed, e.g. the names of the properties may be misspelled, or some required 

properties may be missing, etc. 
●​ The requested capabilities listed in the extensions array may not be available or their values may be 

inappropriate. 
●​ The id may specify an SPS that the ADVERSARY does not support. 
●​ The ADVERSARY may be at maximum capacity and cannot afford running another SPS session. 

 
The VID who mints and sends the Obol to the ADVERSARY is called the initiator. The ADVERSARY assays the 

Obol and checks whether the initiator’s public identity is in the “vids” array. If the Obol is rejected or the initiator’s 
public identity isn’t in the “vids” array, the connection with the initiator is terminated. In the case of the 
non-initiator the ADVERSARY searches its database to find an Obol that contains the non-initiator’s public identity 
and the passphrase. If no Obol is found, the connection with the non-initiator is terminated. Otherwise, the 
ADVERSARY shares the Obol with the non-initiators. Then the VIDs establish a list of shared secrets and send their 
encrypted LPSs to the ADVERSARY who then shares them with the other VIDs. The ADVERSARY sends the initial 
values of h_in and h_out to the VIDs and notifies the active VIDs. The SPS session resumes until it is terminated by 
either the ADVERSARY or one of the VIDs. 

 
Obols are ephemeral and are destroyed after use. It is recommended that users generate new VIDs for 

different sessions, but it is not required. It is the responsibility of users to search for and download a compatible virtual 
world before they initiate or join an SPS session. The difficulties involved in the creation and maintenance of the user 
identity, virtual identities, obols, LPSs and SPSs may motivate the emergence of Hot Clients, which can destroy some of 
the cryptographic and epistemological guarantees of the Hades protocol. See Appendix A for further discussion. 
 

56 Obols, just like other human-readable files, are plain JSON files. 

55 Each ADVERSARY is free to define their own extensions, which allows the VIDs to request modifications of the SPS 
session, e.g. the amount of memory to be preallocated to store the LPSs of each VID, the security parameters of the 
protocol, etc. Note that different adversaries may use different names for the same settings. 

54 Anyone can mint an Obol that contains the public identity of someone and coerce them into an unwanted SPS session 
by poisoning the database of the ADVERSARY. To prevent this the VIDs include a secret passphrase so that the 
ADVERSARY can match against both the public identity and the passphrase. 
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Roles 
 
​ Hades protocol involves three parties: Ἀχιλλεύς, Πάτροκλος, and Μίνως: 
 

●​ Ἀχιλλεύς wants to play chess with Πάτροκλος. However, everytime he does, Πάτροκλος either breaks the rules or 

refuses to admit defeat. So Ἀχιλλεύς requests Μίνως to act as an arbiter. But Ἀχιλλεύς doesn’t trust Μίνως, for he 

thinks that Μίνως favors Πάτροκλος and will choose his side in disputes. Therefore, Ἀχιλλεύς wants Μίνως to 

enforce the rules of chess without knowing who plays what. 

●​ Πάτροκλος receives a request from Ἀχιλλεύς for a game of chess. Like Ἀχιλλεύς, he doesn’t trust Μίνως. Unlike 

Ἀχιλλεύς, he thinks that Μίνως favors Ἀχιλλεύς and will choose his side in disputes. Therefore, Πάτροκλος also 

wants Μίνως to enforce the rules of chess without knowing who plays what. 

●​ Μίνως offers himself to be the arbiter of a chess game between Ἀχιλλεύς and Πάτροκλος. He really doesn’t like it 

when people break the rules, however, so he decides that he will send the delinquent to Τάρταρος. To this end 

he must identify the players and the moves that they play. 

 

​ Since neither Ἀχιλλεύς nor Πάτροκλος want to end up in Τάρταρος, they will have to come up with a scheme to 

make Μίνως enforce the rules of chess without him knowing anything about the moves being played nor whose game he 

is enforcing. Notwithstanding his biases, Μίνως is willing to act as a semi-honest arbiter, following the protocol while 

trying to exploit any available information. 
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Keys 
 

Name Description 

(IPQDSSPUBA, IPQDSSPRIA), 
(IDSSPUBA, IDSSPRIA) 

Ἀχιλλεύς’s identity keys 

(IPQDSSPUBΠ, IPQDSSPRIΠ), 
(IDSSPUBΠ, IDSSPRIΠ) 

Πάτροκλος’s identity keys 

(EPQKEMPUBA, EPQKEMPRIA), 
(EKEXPUPA, EKEXPRIA) 

Ἀχιλλεύς’s ephemeral keys 

(EPQKEMPUBΠ, EPQKEMPRIΠ), 
(EKEXPUPΠ, EKEXPRIΠ) 

Πάτροκλος’s ephemeral keys 

LSKA
1, LSKA

2, LSKA
3, …, LSKA

N Secret keys used by Ἀχιλλεύς to encrypt his LPSs 

LSKΠ
1, LSKΠ

2, LSKΠ
3, …, LSKΠ

N Secret keys used by Πάτροκλος to encrypt his LPSs 

HESK Secret key used by Ἀχιλλεύς and Πάτροκλος to decrypt the SPS 
(i.e. h_in and h_out) 

SSHESK Shared secret used by Ἀχιλλεύς and Πάτροκλος to securely 
exchange HESK 

HEPUB1, HEPUB2, HEPUB3, …, HEPUBN Public parameters of the FHE scheme 

OSP Secret passphrase included in the Obol 
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The Hades Protocol 
 

1.​ Ἀχιλλεύς and Πάτροκλος generate their User Identities as specified in page 8. The parameters of the KDF may 
differ. They may use their previously generated User Identities if they wish so. 

2.​ Ἀχιλλεύς and Πάτροκλος generate their Virtual Identities as specified in page 9. It is recommended that they use a 
different Virtual Identity for every session, but it is not required. 

3.​ Ἀχιλλεύς and Πάτροκλος generate their Public Identities as specified in page 9. They befriend each other by 
exchanging their Public Identities via an authenticated channel, e.g. Signal Messenger57, or in-person. 

4.​ Ἀχιλλεύς becomes an initiator by minting an Obol as specified in page 19. He then generates two ephemeral key 
pairs ((EPQKEMPUBA, EPQKEMPRIA), (EKEXPUPA, EKEXPRIA)) and computes HASH(Obol || EPQKEMPUBA || 
EKEXPUPA) which he signs using his identity keys (IPQDSSPRIA, IDSSPRIA), producing two signatures (PQSIGA, 
SIGA). Then he initiates a new TLS session with Μίνως and sends him the minted Obol, his public identity keys 
(IPQDSSPUBA, IDSSPUBA), his public ephemeral keys (EPQKEMPUBA, EKEXPUPA), and the signatures (PQSIGA, 
SIGA). 

5.​ Μίνως authenticates himself to Ἀχιλλεύς via TLS. He then assays the Obol and verifies the signatures. If the Obol 
is rejected or at least one of the signatures is invalid, the session with Ἀχιλλεύς is terminated. Otherwise he 
saves the Obol, the keys, and the signatures until the Obol expires. 

6.​ Πάτροκλος generates two ephemeral key pairs ((EPQKEMPUBΠ, EPQKEMPRIΠ), (EKEXPUPΠ, EKEXPRIΠ)) and 
computes HASH(EPQKEMPUBΠ || EKEXPUPΠ || IPQDSSPUBΠ || IDSSPUBΠ || OSP) which he signs using his identity 
keys (IPQDSSPRIΠ, IDSSPRIΠ), producing two signatures (PQSIGΠ, SIGΠ). Then he initiates a new TLS session 
with Μίνως and sends him his public identity keys (IPQDSSPUBΠ, IDSSPUBΠ), his public ephemeral keys 
(EPQKEMPUBΠ, EKEXPUPΠ), the signatures (PQSIGΠ, SIGΠ), and the secret passphrase OSP. 

7.​ Μίνως authenticates himself to Πάτροκλος via TLS and verifies the signatures. If at least one of the signatures is 
invalid or no Obol is found to contain Πάτροκλος’s public identity and the secret passphrase OSP or the Obol has 
expired, the session with Πάτροκλος is terminated. Otherwise, he sends the Obol, the keys (EPQKEMPUBA, 
EKEXPUPA), and the signatures (PQSIGA, SIGA) to Πάτροκλος. At the same time he sends the keys (EPQKEMPUBΠ, 
EKEXPUPΠ) and the signatures (PQSIGΠ, SIGΠ) to Ἀχιλλεύς. Μίνως then deletes the Obol, the keys, and the 
signatures. 

8.​ Ἀχιλλεύς computes HASH(EPQKEMPUBΠ || EKEXPUPΠ || IPQDSSPUBΠ || IDSSPUBΠ || OSP) and verifies the 
signatures (PQSIGΠ, SIGΠ). If at least one of the signatures is invalid, the protocol is aborted. Otherwise, he 
derives (LSKA

1, LSKA
2, LSKA

3, …, LSKA
N) using some cryptographic PRF keyed by MKA and sends the ciphertext 

PQCTA to Πάτροκλος via Μίνως: 
 

➢​ (PQCTA, PQSKA) = PQKEM-ENC(EPQKEMPUBΠ) 
➢​ SS = DH(EKEXPUBA, EKEXPUBΠ) 
➢​ MKA = HKDF(PQSKA || SS || EPQKEMPUBA || EPQKEMPUBΠ || EKEXPUBA || EKEXPUBΠ, S, CTX)58 

 
9.​ Πάτροκλος computes HASH(Obol || EPQKEMPUBA || EKEXPUPA) and verifies the signatures (PQSIGA, SIGA). If at 

least one of the signatures is invalid, the protocol is aborted. Otherwise, he derives (LSKΠ
1, LSKΠ

2, LSKΠ
3, …, 

LSKΠ
N) using some cryptographic PRF keyed by MKΠ and sends the ciphertext PQCTΠ to Ἀχιλλεύς via Μίνως: 

 
➢​ (PQCTΠ, PQSKΠ) = PQKEM-ENC(EPQKEMPUBA) 
➢​ SS = DH(EKEXPUBA, EKEXPUBΠ) 
➢​ MKΠ  = HKDF(PQSKΠ  || SS || EPQKEMPUBA || EPQKEMPUBΠ || EKEXPUBA || EKEXPUBΠ, S, CTX) 

 
10.​ Ἀχιλλεύς decapsulates PQCTΠ and obtains PQSKΠ, which he uses to retrieve (LSKΠ

1, LSKΠ
2, LSKΠ

3, …, LSKΠ
N) using 

some cryptographic PRF keyed by MKΠ. He then derives SSHESK and uses it to encrypt HESK, producing CTHESK, 
which he sends to Πάτροκλος via Μίνως together with the random nonce N: 
 

➢​ PQSKΠ = PQKEM-DEC(PQCTΠ, EPQKEMPRIA) 
➢​ MKΠ  = HKDF(PQSKΠ  || SS || EPQKEMPUBA || EPQKEMPUBΠ || EKEXPUBA || EKEXPUBΠ, S, CTX) 

58 S is defined as a zero-filled byte sequence with length equal to the length of the hash output, in bytes, and CTX is 
defined as a concatenation of string representations of the protocol parameters separated by “_”. 

57 In case Ἀχιλλεύς and Πάτροκλος use the Signal Messenger, I assume that they have compared and validated their identity 
public keys. See sub-chapters 4.1 (Authentication) and 4.8 (Identity binding) in “The X3DH Key Agreement Protocol” 
(Marlinspike et al., 2016). 
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➢​ SSHESK = HKDF(MKA || MKΠ, S, CTX) 
➢​ CTHESK = AEAD-ENC(SSHESK, HESK, N) 

 
11.​ Πάτροκλος decapsulates PQCTA and obtains PQSKA, which he uses to retrieve (LSKA

1, LSKA
2, LSKA

3, …, LSKA
N) using 

some cryptographic PRF keyed by MKA. He then derives SSHESK and uses it together with the nonce N to decrypt 
CTHESK and obtain HESK: 
 

➢​ PQSKA = PQKEM-DEC(PQCTA, EPQKEMPRIΠ) 
➢​ MKA  = HKDF(PQSKA  || SS || EPQKEMPUBA || EPQKEMPUBΠ || EKEXPUBA || EKEXPUBΠ, S, CTX) 
➢​ SSHESK = HKDF(MKA || MKΠ, S, CTX) 
➢​ HESK = AEAD-DEC(SSHESK, CTHESK, N) 

 
​ Ἀχιλλεύς and Πάτροκλος use HESK to decrypt the SPS, by which I mean the values of h_in and h_out. Μίνως 
initializes the values of h_in and h_out, and encrypts them using one of the public parameters (HEPUB1, HEPUB2, 
HEPUB3, …, HEPUBN), and sends the ciphertexts (CTh_in, CTh_out) to Ἀχιλλεύς and Πάτροκλος: 
 

➢​ CTh_in = FHE-ENC(h_in, HEPUBi) 
➢​ CTh_out = FHE-ENC(h_out, HEPUBi) 

 
​ Ἀχιλλεύς and Πάτροκλος decrypt CTh_in and CTh_out and modify h_in59, which then they encrypt and send to Μίνως: 
 

➢​ h_in = FHE-DEC(CTh_in, HESK) 
➢​ h_out = FHE-DEC(CTh_out, HESK) 
➢​ h_in_new = ƒ(h_in, …) 
➢​ CTh_in_new = FHE-ENC(h_in_new, HEPUBi) 

 
​ Μίνως computes a predefined list of functions (F1, F2, F3, …, FN) on the ciphertext CTh_in_new and sends the output 
(CTh_out_new) to Ἀχιλλεύς and Πάτροκλος together with CTh_in_new, which they decrypt to obtain the updated values60: 
 

➢​ X1 = FHE-EVAL(Y1, CTh_in_new, F1, HEPUB1, HEPUB2, HEPUB3, …, HEPUBN) 
➢​ X2 = FHE-EVAL(Y2, X1, F2, HEPUB1, HEPUB2, HEPUB3, …, HEPUBN) 
➢​ … 
➢​ CTh_out_new = FHE-EVAL(YN, XN-1, FN, HEPUB1, HEPUB2, HEPUB3, …, HEPUBN) 

 
where Yi is some other data used by Μίνως which can be either plaintext or ciphertext. This goes on until the 

SPS session is terminated by either Ἀχιλλεύς, Πάτροκλος, or Μίνως. 
 
Implementations may decide to encrypt the LPS payload and the state variables with different keys. While the 

payload is transmitted over TLS, the state variables are sent over DTLS (Rescorla et al., 2012) since the VIDs don’t mind 
the packet loss on streaming data: 

 

 
 

Figure 12: Double-encrypted dual-tunnel data exchange 

60 In NULL SPS no FHE computations are performed, instead Μίνως sends the old CTh_out. 

59 Only the active VID(s) can modify h_in. 
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Figure 13: High-level visual overview of the Hades protocol61 

 
 
 
 
 
 
 
 
 
 
 

61 Note that some details (e.g. transmission of LPS data) are missing. The image of Ἀχιλλεύς is by Jona Lendering licensed 
under CC 0. The image of Μίνως is by George E. Koronaios licensed under CC BY-SA 4.0. The image of Πάτροκλος is by 
ArchaiOptix licensed under CC BY-SA 4.0. All images have been cropped and modified into a circular shape with 
transparent backgrounds using GIMP (GNU Image Manipulation Program). 
   
 

24 



 

Karpathian Validators 
 
Before Μίνως can referee a game of chess between Ἀχιλλεύς and Πάτροκλος, he must have full knowledge of the 𝓗 

function, i.e. its input, its output, and the list of transformations applied to its input to obtain the output. The input can 
be defined as some representation of the move being played, and the output as the consequence of that move. There are 
two ways to represent a chess move: 
 

1.​ I can write down the name of the piece being moved and its destination. If there are multiple pieces of the 
same name I can specify its starting square to disambiguate. This is roughly what the standard algebraic 
notation does. Additional symbols can be used to denote castling, promotions, captures, etc. 
 

2.​ I can write down the position of the board before and after the move, concatenated. Forsyth–Edwards 
Notation (FEN) can be used to denote the positions. 

 
​ The first method requires initializing/updating the seed/next board position for each move (stateful), whereas 
for the second method the board position is already part of the move (stateless): 
 

 
 

Figure 14: Stateful vs stateless moves 
 

Stateful moves are easier to read for humans, but in this paper I will use the stateless approach. If each move 
is the input of the 𝓗 function, and since Πάτροκλος is known to cheat, the output can be defined as below: 
 

​  
 

Figure 15: Input and output of the 𝓗 function62 

62 I have simplified the output by ignoring other possibilities like draws and stalemates. 
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In Figure 15, Adolf Anderssen plays Nf6 against Jean Dufresne, forking the King and the Queen. Since this is 
neither illegal nor a checkmate, the 𝓗 function outputs “LEGAL”. To compute the correct output the chess piece being 
moved must be identified, its starting and ending squares determined, its movement scrutinized according to the rules 
of chess, etc. Naturally these steps carve a path in a decision tree: 

 

 
 

Figure 16: To validate a move one must traverse a tree 
 
In Figure 16, the Queen has moved from a3 to g8. Then, a list of predefined rules is used to test whether this is 

legal, e.g. the first rule may test whether a3 and g8 lie on a rank, a file, or a diagonal, the second rule may test whether 
there is an intervening piece, the third rule may test whether a check prevents the Queen from moving, etc. This is a 
simplified case that doesn’t cover promotions and castling. Nevertheless, it is easy to see that the legality of a move 
depends on a lot of factors that involve the piece(s) being moved, the position of the board, the corresponding rules, 
etc. 

 
Remark that on page 17 it was mentioned that h_in is encrypted. This means the crucial data needed to test 

for legality is hidden. We cannot know whether there is a check preventing the Queen from moving when we don’t even 
know if the Queen has moved in the first place. Encryption makes it almost impossible to extract this information from 
the ciphertext. One way to solve this problem is by designing a circuit for every path in Figure 16, e.g. we may design a 
circuit to test whether the piece being moved is a Knight, then design another circuit that tests whether the target 
square is vacant, and so forth. Of course, we have to run all circuits as we don’t know the exact path taken in the 
decision tree: 
 

 
 

Figure 17: 𝓗 function as a network of circuits 
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Manually designing these circuits, however, while doable, is very cumbersome. Instead I will search for them 
in the circuit space63. I begin by associating each piece and the empty square with a floating-point value: 
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Figure 18: Floating-point representations of the pieces and the empty square 

 
Then I define the output as a four-dimensional vector such that: 

 

ILLEGAL  0. 99,  0. 01,  0. 01,  0. 01( )

LEGAL  0. 01,  0. 99,  0. 01,  0. 01( )

WHITE_MATE  0. 01,  0. 99,  0. 99,  0. 01( )

BLACK_MATE  0. 01,  0. 99,  0. 01,  0. 99( )

 
Thus the problem is reduced to training a model using a dataset of pairs where each pair is a chess move 

represented by an array of floating-point values as specified in Figure 18, and each label represented by a vector as 
defined above: 
 

 
 

Figure 19: Searching for circuits in the circuit space 
 
I call models trained on such pairs – where each pair is a continuation of some phenomena – that predict 

whether given phenomena abide by the rules present in the training dataset Karpathian Validators64. 

64 For a more general case see Karpathian Simulators in Appendix B. 

63 The idea of searching for software in program space was introduced and discussed in “Software 2.0” (Karpathy, 2017). 
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I reduce the problem further by training three separate binary classifiers using gradient descent (Cauchy, 
1847) with backpropagation (Rumelhart et al., 1986) as the optimization algorithm and the mean squared error (MSE) 
as the loss function (Bickel et al., 2015): 
 

Model Purpose 
Number of 

neurons in the 
input layer 

Number of 
neurons in the 

hidden layer 

Number of 
neurons in the 

output layer 

Learning rate 
used during 

training 

Number of 
training samples 

used 

model-ɑ Classify legal and 
illegal moves 128 128 2 0.1 10 million 

model-� 
Classify 

checkmates and 
non-checkmates 

128 128 2 0.01 2 million 

model-γ Classify white and 
black checkmates 128 128 2 0.01 2 million 

 
Training samples are extracted from lichess_db_standard_rated_2024-11.pgn65. Since there isn’t a database 

for illegal moves I generate my own using the fact that python-chess (a chess library for Python)66 throws an 
exception when encountering an illegal move67: 
 
chess_letter_markings = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] 
chess_number_markings = ['1', '2', '3', '4', '5', '6', '7', '8'] 
 
for move in game.mainline_moves(): 
    prev_pos = str(board.board_fen()) 
    illegal_move_uci = str(move.uci()) 
    try: 
        while True: 
            if len(illegal_move_uci) == 5: 
                illegal_move_uci = illegal_move_uci[:4] 
            else: 
                illegal_move_uci = illegal_move_uci[0] + illegal_move_uci[1] + 
random.choice(chess_letter_markings) + random.choice(chess_number_markings) 
                board.parse_uci(illegal_move_uci) 
    except chess.IllegalMoveError: 
        illegal_move = chess.Move.from_uci(illegal_move_uci) 
        board.push(illegal_move) 
        move_tensor = tensorize_move(prev_pos, board.board_fen()) 
        all_moves.add((move_tensor.tobytes(), ILLEGAL_MOVE_LABEL.tobytes())) 
        if len(all_moves) >= max_illegal_moves: 
            return all_moves 
        board.pop() 
        board.push(move) 
    except chess.InvalidMoveError: 
         board.push(move) 
         move_tensor = tensorize_move(prev_pos, prev_pos) 
         all_moves.add((move_tensor.tobytes(), ILLEGAL_MOVE_LABEL.tobytes())) 
         if len(all_moves) >= max_illegal_moves: 
             return all_moves 

 
 
 
 

 

67 The full source code can be found at https://github.com/saccharineboi/Hades.git. 

66 For documentation see https://python-chess.readthedocs.io/en/latest/. 

65 Lichess databases are available at https://database.lichess.org/. 
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Below are the training runs of model-ɑ, model-�, and model-γ: 
 

 

 

 
 

Figure 20: From top to bottom, the training runs of model-ɑ, model-�, and model-γ 
 
Their accuracies on Lichess databases from January to June of 2013 are: 

 

Database Accuracy and loss of model-ɑ Accuracy and loss of model-� Accuracy and loss of model-γ 

lichess_db_standard_rated_2013-01.pgn 93.813515% 0.093202 92.539078% 0.126696 99.309647% 0.011806 

lichess_db_standard_rated_2013-02.pgn 93.820229% 0.092993 92.611618% 0.125757 99.340698% 0.011336 

lichess_db_standard_rated_2013-03.pgn 93.843567% 0.092535 92.722206% 0.122951 99.334076% 0.011727 

lichess_db_standard_rated_2013-04.pgn 93.875481% 0.092033 92.682701% 0.123651 99.258339% 0.012468 

lichess_db_standard_rated_2013-05.pgn 93.874863% 0.091946 92.729904% 0.122439 99.259995% 0.012195 

lichess_db_standard_rated_2013-06.pgn 93.907936% 0.091325 92.860413% 0.119425 99.246025% 0.012457 
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​ Note that for model-ɑ the accuracy is that of legal moves since Lichess databases don’t store illegal moves68. 
Our Karpathian Validator is thus a cascade of models working together to predict the correct output: 
 

 
 

Figure 21: Karpathian Validator as a cascade of models 
 
Since the moves are encrypted, all three models are run for every input, but their outputs are either used or 

discarded based on the output of the other models. If model-ɑ predicts that the move is illegal, then the outputs of 
model-� and model-γ are discarded. Otherwise, if model-� predicts that the move is not a checkmate, then the output 
of model-γ is discarded. The discarding happens on the client-side. Hadean adversaries can’t tell which output(s) 
should be discarded, because the outputs are also encrypted. 
 

68 Another problem is the fact that the number of illegal moves in chess is much higher than the number of legal moves, 
but this isn’t taken into account neither by the script on page 28 nor by the training function. This makes it even harder 
to precisely determine the true accuracy of model-ɑ. 
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The 𝓗 function defined on page 4 becomes: 
 

 
 

Figure 22: Encrypted input (𝛩i) and output (𝛩k) of the 𝓗 function 
 
The idea of computing on encrypted data was first introduced in (Rivest et al., 1978)69, but it took 30 years 

before a scheme capable of computing arbitrary number of operations on encrypted data was shown to be feasible in 
(Gentry, 2009)70. In this paper I won’t use Gentry’s original construction due to its practical limitations. 

 
The mathematical operations performed by the multi-layer perceptron (MLP) during inference can be 

divided into two groups: 
 

1.​ Linear functions, e.g. weighted sum of inputs to a neuron. 
2.​ Nonlinear functions, e.g. the sigmoid activation. 

 
​ Since these involve floating-point numbers I will use the CKKS scheme by (Cheon et al., 2019). Each inference 
executes four linear functions in total: two matrix-vector multiplications, and two vector additions. Once trained, the 
weights of the MLP are packed in diagonal-order (Halevi et al., 2014)71. The parallel systolic multiplication algorithm72 
is used for matrix-vector multiplications. Each of these multiplications increases the multiplicative depth of the circuit 
by one. The weights of the MLP that form non-square matrices73 are packed using the Hybrid approach (Juvekar et al., 
2018)74. Each inference also executes two non-linear functions in total: two sigmoid activations, each of which is a 
logistic function with the following formula: 

 σ(𝑥) =  1

1 + 𝑒−𝑥

 
Since CKKS doesn’t natively support non-linear functions I use the Chebyshev approximation (Cody, 1970) of 

the logistic function with the following parameters for each model: 
 

Model Range Degree 

model-ɑ [ -450, 350 ] 100 

model-� [ -100, 100 ] 100 

model-γ [ -100, 100 ] 100 

74 Juvekar et al. explains that the resulting ciphertext contains partial sums that need to be accumulated using the 
rotate-and-sum algorithm. See section V.F of the paper. 

73 This is due to the output layer having a smaller dimension than the hidden layer. 

72 According to Halevi & Shoup, this algorithm was first described in section 3 of Chacha (Bernstein, 2008). See section 
4.3 of (Halevi et al., 2014) for more info. 

71 This is called the “Diagonal” approach. 

70 Gentry also published an essay on FHE which can be read at https://crypto.stanford.edu/craig/easy-fhe.pdf. 

69 Rivest et al. called it privacy homomorphism. See https://fhe.org/history for the history of FHE. 
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​ The Chebyshev approximation of the logistic function consumes a multiplicative depth of eight. Therefore the 
total multiplicative depth of the circuit is 18. The inference on the first 100 encrypted samples of the testing dataset for 
each model is profiled below: 
 

Model 128-bit classic security 128-bit quantum security 

Accuracy Loss Performance Accuracy Loss Performance 

model-ɑ 90% 0.247406 97.1 seconds 90% 0.247406 114.54 seconds 

model-� 88% 0.145914 100.43 seconds 88% 0.145914 175.18 seconds 

model-γ 98% 0.011525 132.76 seconds 98% 0.011525 185.13 seconds 

 
​ The software for the above tests was written in C++ using the OpenFHE library75 (Al Badawi et al., 2022) and 
ran on the AMD Ryzen 7 3700U processor with 20 GB of DDR4 memory76. The security parameters are defined in 
(Albrecht et al., 2018). Compare the above statistics with those of inference on cleartext: 
 

Model Accuracy Loss Performance 

model-ɑ 96% 0.083560 16.49 microseconds 

model-� 90% 0.139590 15.07 microseconds 

model-γ 99% 0.010177 16.33 microseconds 

 
​ The numbers reported for performance on both the ciphertext and the cleartext are the averages for 100 
samples, e.g. it takes on average 97.1 seconds for each inference on ciphertext with 128-bit classic security versus on 
average 16.49 microseconds for each inference on cleartext for model-ɑ. Private inference is therefore about a million 
times slower. The sizes (in bytes) of the input and the output ciphertexts, the cryptocontext, and the keys are shown 
below: 
 

Size of the input 
ciphertext 

Size of the output 
ciphertext 

Size of the 
cryptocontext 

Size of the public 
key 

Size of the 
relinearization key 

Size of the 
rotation key 

20976069 2099281 1513 28316527 84943405 1078740936977 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

77 This is close to 11 gigabytes! 

76 The machine in question (Asus Vivobook X512DA/F512DA) had two memory devices: 4 GB of DDR4 memory with 2400 
MT/s and 16 GB of DDR4 memory with 2667 MT/s. Note that 2 GB of memory are reserved for the GPU. 

75 With the latest commit hash being 7b8346f4eac27121543e36c17237b919e03ec058. The library was compiled with 
-DWITH_NATIVEOPT=ON and -DWITH_TCM=ON. 
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Limitations 
 
​ The Hades protocol doesn’t natively support a “chatbox”, which is ubiquitous in Metaverse applications. This 
is because Hadean adversaries only store and distribute the most recently received LPS data from the VIDs. There is an 
ad hoc solution: preallocate N bytes of zero-initialized block of memory to store N characters78 and continuously shift 
the cursor for every new message. The clients decrypt the messages and store them in their own internal buffers, 
giving an illusion of a chat history. However, this is not as secure as other E2EE messaging protocols like the Signal 
protocol, which, in addition to encrypting the messages, also offers perfect forward secrecy and cryptographic 
deniability. 
 
​ The Hades protocol is compute, memory, and bandwidth-intensive. The size of the input ciphertext is more 
than 40,000 times the size of the same input in cleartext (20976069 bytes vs 512 bytes79). The size of the output 
ciphertext is more than 260,000 times the size of the same output in cleartext (2099281 bytes vs 8 bytes80). Of all the 
keys required the largest are the rotation keys at close to 11 gigabytes, which must be uploaded together with the other 
keys to the server before the SPS session can commence. The inference on encrypted input is about six orders of 
magnitude slower than the same inference on cleartext, and it has higher loss and thus worse accuracy. More 
optimizations and better hardware are needed before consumer-friendly applications that implement the protocol can 
emerge. 
 
​ The Karpathian Validator that was used to solve the problem of classifying encrypted chess moves has a 
worse accuracy than its traditional Software 1.0 counterparts, which have 100% accuracy when classifying cleartext 
moves. A much larger (and deeper) model trained on a bigger dataset is needed to achieve higher accuracies. But it’s 
unclear whether the same approach can be generalized to other games. Another limitation of Karpathian Validators in 
the context of board games is the difficulties involved in: 
 

1.​ Generating datasets for legal and illegal moves, 
2.​ Distinguishing a much larger class of examples (i.e. illegal moves) from a smaller class (i.e. legal moves), 
3.​ Determining the accuracy of the model despite the lack of real-world samples for the larger class. 

 
​ Methods other than Karpathian Validators should be investigated for the solutions of the sort of 
classifications involved. 
 

Currently the only implementations of the protocol are Charon (client-side) and Minos (server-side), which 
at the moment run only on Linux and have much higher system requirements than other Metaverse implementations. 
Although other Metaverse applications don’t focus on the privacy of their users to the extent that the Hades protocol 
does, the high cost of running the protocol will likely discourage adoption, except for NULL SPS sessions. 
 

The protocol is also limited to only two participants, and many modifications are required to achieve the 
more general N-participant solution. For a general case, N copies of the secret key (HESK) must be shared, which may 
reduce the overall security of the protocol, especially in cases where some of the participants use closed-source 
proprietary implementations that are harder to audit. 
 

Conclusion 
 
​ The Internet as of today is lacking mainly in two respects: immersion and privacy. The Hades protocol aims to 
solve both of these problems using its own modified version of the glTF standard and strong cryptography. The results 
show that the private experiences offered by the protocol have high costs, showcasing a need for more optimizations 
and better hardware. The source code of the client-side and the server-side implementations of the protocol (Charon 
and Minos) are available under the GPLv3 license. 
 

The Hades protocol posits a vision of an E2EE Metaverse – a salmagundi of private experiences hidden from 
view, and aims to be yet another tool in the arsenal of the privacy-conscious individual. 

80 Calculated using 32-bit floating-point values, of which there are 2 in the output array. 

79 Calculated using 32-bit floating-point values, of which there are 128 in the input array. 

78 Assuming the ASCII characters. 
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Appendix A – Hot Clients 
 
​ On page 19 I wrote that the difficulties involved in the creation and maintenance of the user identity, virtual 
identities, obols, LPSs and SPSs may motivate the emergence of Hot Clients, which can destroy some of the cryptographic and 
epistemological guarantees of the Hades protocol. 
 
​ Charon is a cold client. It tries to prevent the personal information of its users from being leaked to 
unauthorized parties through its careful implementation of the protocol and other security-aware measures. Most 
importantly it only shares the minimum amount of information with the ADVERSARY – sufficient for the functioning 
of the protocol. Hot clients are implementations that share more information with the ADVERSARY than required by 
the protocol. A typical hot client binds itself to some platform81, or many platforms, and requests proof of identity 
upon use: the platform – which also acts like a Hadean adversary – knows who its users are. 
 
​ The advantages of hot clients include easy handling of the various types of identities, automatic management 
of obols, LPS/SPS handling, etc. They can be particularly attractive for users who don’t have the time nor the resources 
to learn and use cold clients. Proprietary hot clients are harder to audit, which makes them potentially more damaging 
to the privacy of their users82. Some hot clients may not even require installation, and instead run on a web browser. 
 
​ The motivations behind programming hot clients go beyond the desire to track users. Some platforms may 
offer additional functionality in their hot clients to compete with other platforms. Cold clients add new functionality 
only insofar it doesn’t reduce the privacy of their users nor the overall security of the implementation. But hot clients 
have no such guarantees. Hot clients also enable platforms to offer subscription services and targeted advertising, 
which privacy-conscious users may not be so fond of. 
 
​ It can be hard to quantify the damage to the privacy of someone who uses a hot client, especially a proprietary 
one. In the worst case the platform may store the decryption keys (i.e. HESK) in its database, which would remove the 
need to upload potentially large keys to its servers. This results in a lightweight client that can run on many more 
devices compared to a typical cold client. But if the platform can access the decryption keys of its users, then the 
privacy guarantees of the protocol are effectively destroyed. 
 
​ Note that it’s possible for platforms to track its users via cold clients, too. Here’s how it is done: a platform 
offers its users to upload their virtual identities to its database. The users befriend each other not by exchanging their 
public identities in-person or via some other authenticated channel, but through the platform, which handles the 
exchange of public identities under the hood. The users then use their locally-generated virtual identities (that they 
have shared with the platform) to connect to the platform with a cold client. Because the platform knows which virtual 
identity belongs to whom, the users can no longer hide their real identities. Unfortunately here the cold clients are 
powerless. The most they can do is maintain a database of domains for platforms that engage in this behavior and 
warn their users of the dangers involved before they connect to one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

82 Cold clients can also be proprietary, and their use should be avoided for the same reason. 

81 Here platform is a service running in the cloud by an individual or an organization that requires identity verification 
for access to its functions. 
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Appendix B – Karpathian Simulators 
 
​ On page 27 I defined Karpathian Validators as models trained on pairs of continuous phenomena that predict 
whether given phenomena abide by the rules present in the training dataset. A more general notion is that of a Karpathian 
Simulator – a model that is also trained on pairs of continuous phenomena but instead predicts future phenomena 
given past phenomena. Consider the following model: 
 

 
 

Figure 23: 𝓗 function as a Karpathian Simulator 
 

​ Because there are multiple valid continuations, I have included P to denote a set of parameters that influence 
the simulation in some way. In this case 𝓗 may be a function of the human brain and P the mental state of Adolf 
Anderssen at time t when he decided to make the move. The difference is that the move played by Anderssen is 
available only and only to those who possess the secret key SK. This has some interesting consequences. 
 
​ Bostrom defines ancestor simulation as the simulation of the entire mental history of mankind. Ignoring the 
computational requirements and the ethical implications of running such simulations, if ancestor simulations can be 
reduced to: 
 

𝓗SK, P : Enc(𝛩i) → Enc(𝛩k)83 
 
then it should be possible to hide ancestor simulations among non-ancestor simulations. To further illustrate the 
point, let us define an entity – call it Bostrom’s Demon – that checks all the simulations run by some technologically 
mature civilization84 and shuts down any that it thinks is an ancestor simulation. BDs may not even require invasive 
solutions – side-channel analysis may be sufficient85. Let us assume that BDs can train binary classifiers to distinguish 
ancestor simulations from non-ancestor simulations with a sufficiently high accuracy86. 
 
​ The key idea is that BDs are rendered incapable by Karpathian Simulators that run E2EE ancestor simulations. 
But there are some caveats. First, BDs cannot have access to the secret key SK. How can the Simulator – an entity that is 
running the simulation – prevent BDs from accessing SK? One solution is for the Simulator to encrypt its own mind 
under SK, and then continue to homomorphically observe the encrypted simulation. But this introduces two problems: 
 

1.​ The Simulator loses the ability to influence its outer environment. Even if the Simulator memorized the secret 
key SK before encryption, a homomorphic decryption of its own mind would remain encrypted87. 
 

2.​ Even though Bostrom assumes substrate-independence, we need an additional assumption of 
algebraic-independence – that mental states can supervene on any of a broad class of algebraic structures88. 

88 Can an encrypted mind be conscious? 

87 Homomorphic decryption is also used for bootstrapping – a method of resetting the noise in the ciphertext. 

86 This presumes that there are running simulations of both kinds that can generate enough samples for the training 
function. 

85 This may involve analyzing the electromagnetic spectrum of the waste heat emitted by computers that run ancestor 
simulations. 

84 By definition a technologically mature civilization is a civilization capable of running ancestor simulations. 

83 Although the simulation is discretized, there’s no reason to think that the simulated experiences of the simulacra 
won’t involve a sense of continuity. 
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Figure 24: E2EE ancestor simulations are indistinguishable from E2EE non-ancestor simulations89 
 
​ E2EE ancestor simulations form a hierarchy in which the Simulators have access only and only to their own 
simulations and the simulations that run inside their simulations. 
 

 
 

Figure 25: Each Simulator has access only to the simulations of its children, but not to the simulations of its neighbors 
nor to that of its parent, since they are all encrypted under different keys 

89 The top-left is the image of Betelgeuse by Atacama Large Millimeter Array licensed under CC BY 4.0. The top-right is 
the image of Crab Nebula by NASA's Hubble Space Telescope licensed under CC 0. The bottom-left is the reconstruction 
of Lucy at the National Museum of Anthropology in Mexico by ErnestoLazaros licensed under CC BY-SA 4.0. The 
bottom-right is the image of Goethe in 1828 by Joseph Karl Stieler licensed under CC 0. All images have been cropped 
into square-form. 
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